
LoRa enabled Parking Sensor

Wireless sensors detect and report parking space occupancy, thus enabling active parking lot management features, such as search, navigation, and reservation. The easy retrofit solution for parking lots is installed in minutes. It was designed for detecting with high reliability if a parking space is occupied or available.

TWO INDEPENDENT SENSORS PRINCIPLES

OPERATING CONDITIONS

OT ZITUTTITE CONTENTIONS	
Reference	Range
Operating temperature range	- 20 + 65 °C
Humidity range	095 %

Resistant to mechanical influences²: snow-plough3, heavy

goods vehicles (CV) (N1 - N3)4 and high-pressure

cleaning

TARGET MARKETS AND CERTIFICATIONS

PLS Variant	
PARK-MOD IN	India (WPC/ETA)

COMMUNICATION

PLS Variant	LoRa Frequencies	Transmitting Power
PARK-MOD IN	865-867 MHz (IN865)	max. 14 dBm ERP

DEVICE SPECIFICATION

Reference	Specification
Weight	191 g
Power supply	Lithium battery (Li-SOCI2, 3.6V, 9000mAh)
Battery lifetime	Up to 5 years
IP class	IP68

LoRa enabled Parking Sensor

Installation and Maintenance

Installation Sensor to glue to different surfaces / screw in the ground5

Maintenance No maintenance needed

Replacement Core exchangeable without removing the base from the ground

Performance Parameters

- Model based optimized parking state detection algorithm development with millions of data points from real parking events, adaptive algorithm ensures high detection reliability during the whole sensor lifetime.
- 96% average parking state change detection performance7 proven in field-tests with more than 2000 sensors and more than 46 different car types in real parking environments.
- Self-learning calibration during the first five parking events.
- Reporting of parking state changes within 35 sec.(typical).

COMPONENTS

Cover Cap		
Colour	Yellow	
Weight	250 g	

Material Confidential

Description The cap is positioned on top of the sensor core to protect the screw

Sensor Core (TPS110)

Colour Yellow

Weight 124 g

Material Confidential

Description the Sensor-Core contains the sensing unit. It consists of housing, integrated battery,

electronics, O-rings. The core will be installed into the base.

Sensor Base

Colour Yellow

Weight 65 g

Material Confidential (plasma treated on the bottom side)

Description the Sensor Base is the part that is mounted on the ground.